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Using experimental transverse velocity data for very high-Reynolds-number
turbulence, we suggest a model describing both the formation of intermittency and
asymmetry of turbulence. The model, called the ‘bump model’, is a modification
of the ramp model suggested previously. The connection between asymmetry and
intermittency makes it possible to study the latter with relatively low moments.

1. Introduction
One important feature of fluid turbulence is local isotropy. The turbulence is stirred

at the large scales, and, according to the Kolmogorov theory, Kolmogorov (1941b), any
high-Reynolds-number turbulent flow is supposed to restore isotropy in small scales.
It was shown experimentally, however, that in a sheared turbulence the isotropy is not
sufficiently restored for both the scalar and velocity fields, see Tavoularis & Corrsin
(1981), Sreenivasan (1991), Shen & Warhaft (2000), Ferchichi & Tavoularis (2000),
Schumacher, Sreenivasan & Yeung (2003). In numerical simulations, the failure to
return to isotropy was linked to both the asymmetry of the probability distribution
function (PDF) and to the vortex sheets, Pumir & Shraiman (1995). It became clear
that the shear in the integral scale induces asymmetry down to the small scales, where
it is manifested by structures like cliffs, etc., Staicu & van de Water (2003).

In case of isotropic turbulence the asymmetry of the PDF appears naturally; for
the longitudinal velocity increments ur = u(x + r) − u(x) we have

Bu = 〈ur〉 = 0, (1.1)

while, in the inertial range,

Buuu(r) =
〈
u3

r

〉
= − 4

5
εr. (1.2)

Equation (1.2) is the so-called 4/5-Kolmogorov law, Kolmogorov (1941a). The fact
that the first moment vanishes whereas the third moment does not clearly indicates
that the PDF for ur is asymmetric.

This asymmetry is traditionally linked to the direction of the energy cascade in
fully developed turbulence, Monin & Yaglom (1971), rather than to the small-scale
structures, or intermittency. Moreover, the Kolmogorov law (1.2) is exact in the
inertial range, while other moments contain the so-called intermittency corrections.
From the self-similar properties of turbulence, suggested by Kolmogorov (1941b), a
simple scaling for ur follows, namely,

〈|ur |p〉 ∼ rp/3. (1.3)
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It became clear, however, that there are corrections to these scalings, usually attributed
to intermittency. The only exception is the third moment, p = 3, according to (1.2).
Note that the prediction (1.3) deals with moments of |ur | while in (1.2) we have a
moment of ur ; nevertheless, this should not affect the properties of self-similarity of
the turbulence.

Thus, at first sight, the isotropic turbulence asymmetry manifested in (1.2) is not
related to the intermittency, unlike what happens in the sheared turbulence. However,
this is not the case. A more detailed study of the third-order structure function has
proved to be useful in understanding the intermittency. It is important to understand
the contribution to third moment given by the tails of the PDF.

The contribution of the rare violent events is expected to be substantial for high-
order moments. As for the low-order moments, it is natural to assume that the main
events from the core of P (ur ), the PDF, mainly contribute. This is certainly the case
for the even (low)-order structure functions, or for moments like 〈|ur |p〉.

Presumably, the third-order structure functions can be considered as relatively
low-order moments, and therefore one may assume that the main events essentially
form them. However, the situation is more subtle: one should keep in mind that
these moments, like other odd-order structure functions, do not vanish only due
to the asymmetry. Again, one would assume that the asymmetry manifested by the
Kolmogorov law (1.2) is presented by the main events, that is by the core of the PDF.
However, if the core of the PDF were more or less symmetric, then the contribution
of the tails would be substantial.

This asymmetry, described by a ramp model, is indeed related to intermittency
(in addition to the asymmetry), as suggested by Vainshtein & Sreenivasan (1994)
and Sreenivasan et al. (1996). Note that the ramp model was suggested much
earlier: for example, local anisotropy was observed in heated and cooled turbulent
boundary layers, Mestayer et al. (1976), as well as in temperature distributions,
Antonia & Sreenivasan (1977). Returning to the connection between the anisotropy
and intermittency, we note that further studies showed that the tails of P (ur ),
responsible for the intermittency, substantially contribute to the structure function,
see Vainshtein (2000). Another way to check this connection between asymmetry
and intermittency is to compare the positive and negative parts of the PDF for ur

directly, and we have seen that the asymmetry of the PDF stretches far into the tails,
Vainshtein (2000).

This relationship between asymmetry and intermittency makes it possible to study
the latter with relatively low-order moments. It is interesting to note that the low-
order structure functions (presumably reflecting the main events, rather than rare tail
events) do indeed show intermittency corrections, see Sreenivasan et al. (1996), Cao,
Chen & Sreenivasan (1996) and Chen et al. (2005). The transverse velocities give
additional information about both asymmetry and intermittency, and this paper is
devoted to their study.

2. Problem description
The transverse (vertical) component of the velocity increments vr = v(x+r)−v(x) is

also assumed to possess asymmetry, although
〈
v3

r

〉
= 0 (this moment does not vanish

in sheared turbulence, Staicu & van de Water (2003)). Assuming isotropic turbulence,
the only non-vanishing third-order correlation containing vr is

Buvv =
〈
urv

2
r

〉
=

1

6

d(Buuur)

dr
, (2.1)
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Figure 1. Experimental moment 〈urv
2
r 〉 (asterisks), the power law fit ∼ r1.01±0.02 (thick solid

line) are compared to Buvv derived from the longitudinal moment according to (2.1), and
depicted by a solid line. The distance is given in terms of the Kolmogorov microscale η.

Landau & Lifschitz (1987), Monin & Yaglom (1971). In this paper, we compare the
measured moment Buvv with cumulative moments created in such a way that only the
tail parts of the distribution (rare events) contribute to the moment. We will show
that these parts (responsible for intermittency) quite satisfactorily recover the third
moment.

Although this recovery using rare violent events seems to be unusual, as mentioned
in the Introduction, the situation is more subtle. It is not obvious a priori that
a ‘typical’ distribution would not behave in qualitatively the same way. In order to
assess this recovery, we need a ‘regular’ distribution to compare with. For this purpose,
we use Gaussian-like distributions. They are defined in such a way as to recover the
third moment Buvv , but, as is shown in § 3, the cumulative moments for these pseudo-
Gaussian distributions are noticeably below the experimental cumulative moments.
That is the rare events of ‘regular’ distributions poorly recover the moment Buvv .

Another way to assess the deviation of the cumulative moments from the full
moment Buvv is to consider a numerical model which supposedly contains both
asymmetry and intermittency, § 4. Again, the model recovers Buvv by definition;
however, unlike the pseudo-Gaussian distribution, it shows qualitative agreement
with the experimental Buvv , and with its cumulative parts.

We used X-wire data acquired at Brookhaven National Laboratory. The distance
of probe above the ground was 35 m; the number of samples was 40960000 per
component, that is, for longitudinal (u) and transverse (v) components; the sampling
frequency was 10 kHz; the mean velocity was 5.15076224 m s−1; rms u-velocity was
1.81617371 m s−1; rms v-velocity was 1.3646025 m s−1; Taylor Reynolds number was
10680 (courtesy of K. R. Sreenivasan). As usual, the data are interpreted using
Taylor’s hypothesis.

As seen from figure 1, the experimental Buvv is close to that obtained from (2.1),
especially at small distances between the points, in agreement with earlier observations
by Kurien & Sreenivasan (2001) (see their figure 2). At small scales the statistical



246 S. Vainshtein

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

|B
uv

v|
 a

nd
 it

s 
ap

pr
ox

im
at

io
ns

100 101

Distance, r/η

pseudo--G
aussia

n, |u′| > 3 

102 103 104

pseudo--G
aussia

n, |u′| > 4 

Figure 2. Comparing the experimental Buvv with cumulative moments: asterisks correspond
to the measurements, open squares connected by a dashed line correspond to |v′

r | � 3, open
squares connected by a dashed-dotted line to |v′

r | � 4, open circles connected by a dashed
line correspond to |u′

r | � 3, and open circles connected by a dashed-dotted line correspond to
|u′

r | � 4.

properties are more isotropic, in accordance with Kolmogorov’s ideas about local
isotropy.

Denote

u′
r =

ur

σu

, v′
r =

vr

σv

,

where

σu =
〈
u2

r

〉1/2
= B1/2

uu , σv =
〈
v2

r

〉1/2
= B1/2

vv .

We will consider cumulative moments,

〈
u′

rv
′2
r

〉∣∣
|u′

r |�t
=

(∫ −t

−∞
+

∫ ∞

t

)
du′

r

∫ ∞

−∞
dv′

ru
′
rv

′2
r P (u′

r , v
′
r ), (2.2)

〈
u′

rv
′2
r

〉∣∣
|v′

r |�t
=

∫ ∞

−∞
du′

r

(∫ −t

−∞
+

∫ ∞

t

)
dv′

ru
′
rv

′2
r P (u′

r , v
′
r ), (2.3)

where P (u′
r , v

′
r ) is the distribution function, and t is a number. If t � 1, then essentially

the whole distribution contributes, and the cumulative moments are expected almost
to coincide with 〈u′

rv
′2
r 〉 = k(r), where k = Buvv/(σuσ

2
v ), analogously to skewness. For

not small t , we are dealing with the tails of the distribution, and it is important to
know what contribution they give to the moment.

3. Cumulative moments
Figure 2 shows these moments for t = 3 and 4. It can be seen that the moments

thus constructed do not deviate far from the experimental Buvv(r).



Intermittency and asymmetry 247

100

10–2

P
D

F

10–4

10–6

–50 0

u′r
50

Figure 3. The experimental PDF for different u′
r , r/η = 1.29 (asterisks), compared with

Gaussian (dashed line) and Ir (dashed-dotted).

In order to get some idea of how strong the deviation of the cumulative moments
is from experimental results, note that, for the smallest distances r , the values of t =3
and t = 4 correspond to about 1% of all events; for larger distances this number
being even less. Figure 2 suggest that these events alone satisfactorily recover the
mixed moment Buvv .

Still, it would be useful to have a ‘regular’ distribution to compare with. Indeed,
the relatively rare events satisfactorily recover the moment Buvv(r), satisfactorily, but
not completely, of course. It is not obvious that the cumulative moments for t = 3
and t = 4 for ‘regular’ asymmetric distributions would recover this moment to the
same extent as the experimental cumulative moments do.

By a ‘regular’ PDF we mean a PDF that provides asymmetry through the main
events (rather than through the rare tail events). A Gaussian distribution is symmetric,
its third moment vanishes, and therefore it is not suitable for this purpose. We
construct a series of PDFs Ir (u

′) for different distances r as a sum of two Gaussian
functions in such a way that all three first moments coincide with the experimental
moments. Namely, let

〈u′0〉I =

∫
Ir du′ = 1, 〈u′〉I =

∫
Iru

′ du′ = 0,

〈u′2〉I = 1, 〈u′3〉I = k(r).

Then,

〈ur〉I = 〈u′〉I σu = 0, 〈vr〉I = 〈u′〉I σv = 0, (3.1)〈
u2

r

〉
I

= Buu,
〈
v2

r

〉
I

= Bvv,
〈
urv

2
r

〉
I

= B1/2
uu Bvvk = Buvv. (3.2)

As seen from (3.1), (3.2), the Ir distribution recovers the first, the second and the
third moments by definition. Figure 3 gives an example of this PDF for r/η = 1.29.
It is compared with experimental PDFs for different u′

r , the latter having clearly
asymmetric tails (a direct comparison of positive and negative tails is given by
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Figure 4. Experimental cumulative tail moments for different cut-off numbers t . Solid lines
correspond to u′

r � t , dashed lines – to u′
r � −t .

Vainshtein (2000)). The distribution Ir is very similar to the Gaussian, except the
skewness of the former does not vanish, i.e. it is asymmetric. For this reason, we will
call it ‘pseudo-Gaussian’.

As the total moment 〈urv
2
r 〉I recovers the third moment by definition (3.2), we

will consider the third moment for cumulative average 〈urv
2
r 〉I ||u′ |�t , t =3 or 4.

Corresponding moments are depicted in figure 2. We note that even for t = 3, the
cumulative moment constructed from Ir is essentially lower than Buvv; only for large
distances does it approach the experimental cumulative moments. In the case t =4, it
can be seen that the pseudo-Gaussian cumulative moment is quite noticeably lower
than the corresponding experimental cumulative structure function.

Thus, relatively rare events of experimental PDFs satisfactorily recover the third
moment. The deviation of the cumulative moments from the total moment Buvv is
substantially less than for the pseudo-Gaussian distribution.

As a non-vanishing Buuu is a result of asymmetry of the PDF for ur , the correlation
Buvv , obeying (2.1), is therefore related to the asymmetry. Indeed, in order that Buvv < 0,
there should be an anti-correlation between ur and v2

r : decreasing ur is accompanied
by increasing v2

r , and vice versa. Roughly speaking, the conditional average satisfies

Buvv(ur < 0) > Buvv(ur > 0).

If the asymmetry is indeed related to intermittency, this conditional inequality should
be satisfied for ur > t versus ur < −t , i.e.

Buvv(ur < −t) > Buvv(ur > t),

where t is not a small number. To check this, we consider, first, the distributions for
the smallest r corresponding to the distance between two neighbour samples. Second,
we consider cumulative moments, 〈urv

2
r 〉|ur �−t , and 〈urv

2
r 〉|ur �t , for different t .

Figure 4 presents the experimental moments. It shows, first, quite substantial tails:
even when t = 30, or greater (in units of σu), the contribution to the cumulative
moments is noticeable – note that the case t = 30 corresponds to a factor of less than
10−6 of the events. Second, we see a remarkable feature: the negative contributions
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Figure 5. (a) Ramp structure. (b) Derivative of the ramp. (c) Bumpstructure. In the
one-dimensional model, the velocity component u is a sum of the solid line and dashed
line. In the two-dimensional model, the dashed line corresponds to vx , and the solid line to vy ,
see (4.1)–(4.3).

exceed the positive not only at small t , corresponding to the core of the distribution,
but also far into the tails.

4. Constructing the model
Vainshtein & Sreenivasan (1994) and Sreenivasan et al. (1996) suggested a model

to explain how the asymmetry appears. Figure 5(a) shows a ramp structure. Clearly,
〈∂xu(x)〉 = 0, while 〈∂xu(x)3〉 < 0. In addition, the negative part of ∂xu(x) is certainly
intermittent, see figure 5(b), and that is how the idea of intermittency being connected
to the asymmetry came about.

This model is only heuristic, however. It was shown by Jiménez (1992), Hatakeyama
& Kambe (1997), and Tanaka & Kida (1993) that a Burgers vortex, embedded
in a converging motion, acquires negative skewness, this picture containing both
asymmetry and intermittency. The ramp model does not exactly correspond to this. A
more realistic modification of this model is the bump model by Vainshtein (2001), see
figure 5(c), where u(x) is the sum of the solid and dashed lines. Here again, 〈∂xu(x)〉 = 0
while 〈∂xu(x)3〉 < 0. This model simulates a converging motion (the dashed line in the
vicinity of the solid line peak), naturally generating a vortex (solid line). It is thought
that, this structure in the longitudinal velocity appears in the vicinity of a Burgers
vortex.

Both the ramp model and the bump model are one-dimensional, and therefore
they do not reflect any structures appearing in the transverse velocity component.
Therefore, we need further modification of the model to make it two- or three-
dimensional. Besides, a real vortex generated by converging motion depicted by the
solid line in figure 5(c) would be described by a shear of the vy-component of velocity
(rather than by a shear of vx). If that is the case, then the ur–v2

r anti-correlation
will appear. Indeed, when ur < 0 (converging motion), the vortex is generated thus
increasing v2

y , that is, v2
r , while for ur > 0 (diverging motion), the vortex is not

generated (and v2
r is smaller than average).

Consider, therefore, a two-dimensional model:

vx = f1(x
′), (4.1)
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smooth motion corresponding to the dashed line in figure 5(c), and

vy = f2(x
′), (4.2)

a ‘bump’, or vortex depicted by a solid line. Let α = f1(x
′ + rx) − f1(x

′), and
ω = f2(x

′ + rx) − f2(x
′). Then,

ur = [α cos φ + ω sin φ] cos φ, vr = [−α sin φ + ω cos φ] cos φ, (4.3)

where rx = r cos φ, ry = r sin φ. We thus have two averages: over x ′, and over φ. As
a result, 〈ur〉 = 〈vr〉 = 0, while

〈
u3

r

〉
= 〈α3〉φ60 + 3α(0)〈ω2〉φ40, (4.4)

〈
urv

2
r

〉
= 〈α3〉φ40 + α(0)〈ω2〉(φ60 − 2φ40), (4.5)

where

φ60 = 〈cos6 φ〉 = 5
16

, φ42 = 〈cos4 φ sin2 φ〉 = 1
16

,

and 〈v3
r 〉 = 0. Here we considered small r , so that ω is strongly peaked at x ′ = 0, and

therefore, when combined with ω, the value of α contributes only at x ′ = 0. Note that
α(0) < 0 (converging motion), and |ω| � |α|, and therefore both 〈u3

r 〉 and 〈urv
2
r 〉 are

negative.
It is useful to simulate both smooth motion (4.1) and the bump (4.2) numerically.

The numerical model should be constructed in such a way that the first three moments
coincide with the experimental values: expressions (4.4) and (4.5) guarantee only that
the signs of the two third-order structure functions are correct. Then, we will have
several free parameters such as the width of the bump (4.2), etc. It is interesting to
note that by choosing them simply in a ‘reasonable’ way, we immediately reproduce
the real experimental values for 〈u3

r 〉, and 〈urv
2
r 〉 with a good accuracy. To do this

better, we used computer routines to optimize these parameters so that they fit the
experimental values in the best way.

On the other hand, though, the model, being a little more complicated than
the previous one-dimensional model, is still much too simple to reflect all the real
properties of turbulence. In particular, it does not reflect the multi-scale nature of
turbulence. Nevertheless, it makes sense to simulate the model (4.1)–(4.3) numerically,
constructing the third-order moments (longitudinal and mixed), and to compare them
with the experimental data. We may expect some qualitative agreement with the
experiment.

We now are ready to calculate the cumulative moments 〈urv
2
r 〉|ur �−t , and

〈urv
2
r 〉|ur �t , for different t , corresponding to this model. They are shown in figure 6.

Qualitatively, the we see the same features as in experimental cumulative moments
depicted in figure 4. Namely, there are substantial tails, obviously related to the
presence of the vortex (or the ‘bump’), and the negative part always exceeds the
positive one.

Note however that the agreement is only qualitative. Quantitatively, we can see that
the intermittency in the model, figure 6, is much less pronounced than in figure 4.
As mentioned above, this is because the model is too simple. We would get more
intermittency if these bumps were random and multi-scaled, in which case the effective
Reynolds number would increase. At present, we believe that the numerical model
illustrates the connection between asymmetry and intermittency.
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Figure 6. Cumulative tail moments for different cut-off numbers t corresponding to the
bump model, (4.1)–(4.3). Solid line corresponds to u′

r � t , dashed line to u′
r � −t .

5. Discussion
Thus, isotropic turbulence has something in common with a sheared turbulence.

Namely, the asymmetry is related to the intermittency. Note that the cumulative
moments proved to be useful in studying the tails of the distributions: we thus
consider the contribution of the tails, as if the core of the distribution does not
contribute at all.

We saw that the Kolmogorov law, and related third-order ur–v2
r correlation,

can be satisfactory reproduced by the tail events only. In contrast, the third-order
moments corresponding to pseudo-Gaussian distributions are poorly reproduced by
the contribution of the tails.

As these third-order moments do not vanish because of the asymmetry of the
distributions, we assume that the intermittency (i.e. the substantial contribution of the
tails of the distributions) is related to the asymmetry. This conjecture can be checked
directly, by comparing positive and negative contributions. We see that the predicted
difference between the positive and negative parts is present not only at the core of
the distribution but also stretches far into the tails.

The intermittency related to the asymmetry comes out naturally from the ramp
model and its two-dimensional modification – the bump model. It simply presents a
vortex embedded in converging motion. An analytical representation of this model
shows qualitatively the same behaviour as the experimental data. We conclude that it
is consistent with the above interpretation of intermittency related to the asymmetry.
As the third moment is a relatively low moment, this conjecture suggests a useful tool
for studying the intermittency of turbulence.

I thank K. R. Sreenivasan, S. Kurien, and R. Rosner for sending me valuable data,
and for discussions.
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